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ABSTRACT

We show that in the one-dimensional case the weighted Hardy–Littlewood

maximal operator Mµ is bounded on BMO(µ) for arbitrary Radon mea-

sure µ, and that this is not the case in higher dimensions.

1. Introduction

Let µ be a nonnegative Radon measure on R
n. For a bounded set E ⊂ R

n of

positive µ-measure and a µ-locally integrable function f set

fE,µ =
1

µ(E)

∫

E

f(x)dµ, Ωµ(f ; E) =
1

µ(E)

∫

E

|f(x) − fE,µ|dµ.

The Hardy–Littlewood and Fefferman–Stein maximal operators with respect to

µ are defined by

Mµf(x) = sup
Q∋x

|f |Q,µ and f#
µ (x) = sup

Q∋x

Ωµ(f ; Q),

respectively, where the supremum is taken over all cubes Q containing the

point x such that µ(Q) > 0. By a cube we mean an open cube with sides

parallel to the axes.

If µ is a doubling measure (i.e., there exists a constant c > 0 such that

µ(2Q) ≤ cµ(Q) for all Q), then a classical result [13, p. 13] says that Mµ maps

L1
µ into weak-L1

µ (in other words, Mµ is of weak type (1, 1)) and Lp
µ into itself

for p > 1. In the case n = 1 this result holds without any assumption on µ;
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when n ≥ 2 there exist measures µ for which Mµ is not of weak type (1, 1) (see

[11] and also [12, 16]).

In this paper we consider a question on the behaviour of Mµ on the space

BMO(µ) for nondoubling measures. A function f ∈ L1
loc(µ) is said to belong

to BMO(µ) if

‖f‖BMO(µ) ≡ ‖f#
µ ‖∞ < ∞.

We say that f ∈ L1
loc(µ) belongs to BLO(µ) (cf. [3]) if

‖f‖BLO(µ) ≡ sup
Q

(fQ,µ − ess inf
Q

f) < ∞.

Note that BLO(µ) ⊂ BMO(µ) and ‖f‖BMO(µ) ≤ 2‖f‖BLO(µ).

It is well-known for doubling µ that if f ∈ BMO(µ) and Mµf is not identically

infinite, then Mµf ∈ BLO(µ), and

(1.1) ‖Mµf‖BLO(µ) ≤ cµ‖f‖BMO(µ).

In the case of Lebesgue measure, (1.1) was first proved by Bennett, DeVore and

Sharpley [2] with the BMO-norm on the left-hand side; a BLO-improvement

was obtained later in [1]. The method used in [1] works easily for any doubling

measure. Different proofs of (1.1) were also given in [4, 7, 10, 15]. An attempt to

generalize them to arbitrary measures leads only to measures satisfying the dou-

bling condition. Also, all these proofs were essentially based (at least implicitly)

on the John–Nirenberg inequality.

Observe that, as was shown in [8], the John–Nirenberg inequality for functions

from BMO(µ) holds for a wide class of µ, namely, whenever µ(L) = 0 for every

hyperplane L, orthogonal to one of the coordinate axes. In the one-dimensional

case this simply means that µ is continuous. Also, an example of singular µ was

given in [8] for which the John–Nirenberg inequality does not hold.

The main result of this paper is somewhat surprising since it says that in the

one-dimensional case (1.1) holds for any nonnegative Radon measure µ, even

without the requirement of continuity of µ. Thus, we shall give a new proof

of (1.1) that avoids both the doubling property of µ and the John–Nirenberg

inequality. We also show that this geometrical phenomenon is not true in higher

dimensions. The following theorem may be viewed as a BMO-counterpart of

Sjögren’s theorem from [11].

Theorem 1.1: (i) Let µ be a nonnegative Radon measure on R. For any µ-

locally integrable function f on R and for all x ∈ R,

(1.2) Mµ(Mµf)(x) ≤ 40Mµ(f#
µ )(x) + Mµf(x).
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In particular, if f ∈ BMO(µ) and Mµf < ∞, then

(1.3) ‖Mµf‖BLO(µ) ≤ 40‖f‖BMO(µ).

(ii) For n = 2, there is an absolutely continuous measure µ for which Mµ is not

bounded on BMO(µ).

2. Auxiliary propositions

We shall use the following well-known properties of mean oscillations.

Proposition 2.1: For any f ∈ L1
loc(µ),

(2.1) Ωµ(|f |; E) ≤ 2Ωµ(f ; E),

(2.2) Ωµ(max(f, 0); E) ≤ Ωµ(f ; E),

and

(2.3) Ωµ(f ; E) ≤ 2 inf
c

1

µ(E)

∫

E

|f(x) − c|dµ.

We will also need the above-mentioned weak type (1, 1) property of Mµ for

arbitrary measures on R.

Proposition 2.2: Let µ be a nonnegative Radon measure on R. Then for any

f ∈ L1
µ(R),

(2.4) µ{x ∈ R : Mµf(x) > α} ≤
2

α
‖f‖L1

µ(R) (α > 0).

This result was obtained in [11]; for a proof with constant 2 on the right-hand

side of (2.4) see [5].

Proposition 2.3: Let µ be a nonnegative Radon measure on R. A nonnegative

function f ∈ L1
loc(µ) belongs to BLO(µ) if and only if Mµf − f belongs to L∞,

and

(2.5) ‖f‖BLO(µ) = ‖Mµf − f‖∞.

In the case of Lebesgue measure this was proved in [1, Lemma 2] for all

n ≥ 1; the proof was based on the notion of Lebesgue points of f . Due to

Proposition 2.2, such approach in the one-dimensional case can be directly

generalized to arbitrary measures. We omit details.
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3. Proof of the main result

Proof of Theorem 1.1: We start with the first part of the theorem, so let n = 1.

Assume that f ≥ 0. Fix a point x, and let I be an arbitrary interval containing

x. Let R > 0 be a number large enough such that I ⊂ (−R, R). Let y ∈ I, and

take any interval J ⊂ (−R, R) containing y.

Suppose that µ(J) ≥ µ(I)/2. Then setting J̃ = I ∪J , we have µ(J̃) ≤ 3µ(J),

and

fJ,µ ≤ |fJ,µ − f
J̃,µ

| + f
J̃,µ

≤ 3Ωµ(f ; J̃) + Mµf(x)

≤ 3f#
µ (y) + Mµf(x).(3.1)

Assume now that µ(J) < µ(I)/2. Denote by L the union of I and all the

intervals J ⊂ (−R, R) with J ∩ I 6= ∅ and µ(J) < µ(I)/2. It is clear that L

is an interval. Also we easily have that µ(L) ≤ 2µ(I). Indeed, let L = (a, b).

For any ε > 0 there exist intervals Ji, i = 1, 2, such that µ(Ji) < µ(I)/2 and

(a + ε, b − ε) ⊂ J1 ∪ I ∪ J2. Hence,

µ((a + ε, b − ε)) < 2µ(I) and µ(L) = lim
ε→0

µ((a + ε, b − ε)) ≤ 2µ(I).

Set

EJ = {ξ ∈ J : |f(ξ) − fJ,µ| ≥ |f(ξ) − fL,µ|}.

If µ(EJ ) ≥ µ(J)/2, then

fJ,µ ≤ 2 inf
ξ∈EJ

|f(ξ) − fJ,µ| + fL,µ ≤ 4Ωµ(f ; J) + Mµf(x)

≤ 4f#
µ (y) + Mµf(x).(3.2)

If µ(EJ ) < µ(J)/2, then µ(J \ EJ ) ≥ µ(J)/2, hence

fJ,µ ≤ 2 inf
ξ∈J\EJ

|f(ξ) − fL,µ)| + fL,µ

≤ 2mµ((f − fL,µ)χL)(y) + Mµf(x),(3.3)

where

mµf(y) = sup
J∋y

sup
E⊂J:µ(E)≥ 1

2
µ(J)

inf
ξ∈E

|f(ξ)|.

Unifying estimates (3.1), (3.2) and (3.3) yields

MR
µ f(y) = sup

J∋y,J⊂(−R,R)

fJ,µ

≤ 4f#
µ (y) + 2mµ((f − fL,µ)χL)(y) + Mµf(x).(3.4)
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It is easy to see that

{y : mµf(y) > α} ⊂ {y : Mµχ{|f |>α}(y) ≥ 1/2}.

Hence, by Proposition 2.2,

‖mµf‖L1
µ

=

∫ ∞

0

µ{y : mµf(y) > α}dα

≤ 4

∫ ∞

0

µ{y : |f(y)| > α}dα = 4‖f‖L1
µ
.

Therefore, using (3.4) and the fact that µ(L) ≤ 2µ(I), we have

1

µ(I)

∫

I

MR
µ f(y)dµ ≤

4

µ(I)

∫

I

f#
µ (y)dµ +

2

µ(I)
‖mµ((f − fL,µ)χL)‖L1

µ
+ Mµf(x)

≤4Mµ(f#
µ )(x) + 16Ωµ(f ; L) + Mµf(x)

≤20Mµ(f#
µ )(x) + Mµf(x).

Letting R → ∞, and then taking the supremum over all I containing x, we

obtain

(3.5) Mµ(Mµf)(x) ≤ 20Mµ(f#
µ )(x) + Mµf(x).

This proves (1.2) for nonnegative f . The general case follows from (3.5) and

(2.1). Next, (1.3) follows from (1.2) and from Proposition 2.3.

We turn to the second part of the theorem, suppose that n = 2. Let Q0 =

{(x, y) : 0 < x, y < 1}. Denote by ∆ and Γ the open triangles bounded by the

lines y = x, y = 1/2, x = 0, and y = x, y = 0, x = 1, respectively. Set now

dµ = χQ0\∆(x, y)dxdy and f(x, y) =
(
log(x/y)

)
χΓ(x, y).

First we prove that f ∈ BMO(µ). Clearly it suffices to show that

(3.6) sup
P⊂Q0

Ωµ(f ; P ) < ∞,

where the supremum is taken over all rectangles P ⊂ Q0 with µ(P ) > 0. Observe

that if P ⊂ Q0, then µ(P ) = |P \ ∆|, where | · | denotes the usual Lebesgue

measure. Therefore one assumes that P \ ∆ 6= ∅.

Using (2.2) and the fact that log x ∈ BMO(0, 1), for every rectangle P ⊂ Q0

we obtain

(3.7) Ω(f ; P ) ≤ Ω(log(x/y); P ) ≤ 2‖ logx‖BMO(0,1) ≤ c

(we drop the subscript µ in the case of Lebesgue measure).
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Take now an arbitrary rectangle P ⊂ Q0 such that P \ ∆ 6= ∅. If P ∩ ∆ = ∅,

then by (3.7) we obtain

Ωµ(f ; P ) = Ω(f ; P ) ≤ c.

Therefore, assume that P ∩ ∆ 6= ∅. There are the following cases.

Case 1: Suppose that P ∩ {y = x} = ∅. In this case we trivially have

Ωµ(f ; P ) = 0.

Case 2: Suppose that P ∩ {y = x} 6= ∅ and P ∩ {y = 1/2} = ∅. Let P̃ be

the smallest rectangle containing P \ ∆. It is easy to see that |P̃ | ≤ 2|P \ ∆|.

Therefore, by (2.3) and (3.7),

Ωµ(f ; P ) ≤
2

|P \ ∆|

∫

P\∆

|f(x, y) − f
P̃
|dxdy ≤ 4Ω(f ; P̃ ) ≤ 4c.

Case 3: Suppose that P ∩ {y = x} 6= ∅, P ∩ {y = 1/2} 6= ∅ and (1/2, 1/2) ∈

P . If the point (1/4, 1/4) does not belong to P , then f(x, y) ≤ log 4 for all

(x, y) ∈ P , hence Ωµ(f ; P ) ≤ 2 log 4. If (1/4, 1/4) ∈ P , then it is easy to see

that |P | ≤ 4|P \ ∆|, and by (2.3) and (3.7) we have

Ωµ(f ; P ) ≤
2

|P \ ∆|

∫

P\∆

|f(x, y) − fP |dxdy ≤ 8Ω(f ; P ) ≤ 8c.

Case 4: Suppose that P ∩{y = x} 6= ∅, P ∩{y = 1/2} 6= ∅ and (1/2, 1/2) 6∈ P .

Let P1 = P ∩ {y < 1/2} and P2 = P ∩ {y ≥ 1/2}. As in case 2, we take P̃1

to be the smallest rectangle containing P1 \ ∆. Denote by P ′
2 the rectangle P2

translated until P̃1, and let
˜̃
P = P̃1 ∪ P ′

2. Observe that
˜̃
P is a rectangle, and

|
˜̃
P | = |P̃1| + |P ′

2| ≤ 2|P1 \ ∆| + |P2| ≤ 2µ(P ).

Thus, applying again (2.3) and (3.7), we obtain

Ωµ(f ; P ) ≤
4

|
˜̃
P |

(∫

P2

|f − f ˜̃
P
|dxdy +

∫

P1\∆

|f − f ˜̃
P
|dxdy

)

=
4

|
˜̃
P |

(∫

P ′

2

|f − f ˜̃
P
|dxdy +

∫

P1\∆

|f − f ˜̃
P
|dxdy

)

≤ 4Ω(f ;
˜̃
P ) ≤ 4c.

Combining all the cases considered above proves (3.6).
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It remains to show that Mµf 6∈ BMO(µ). For 0 < ε < 1/4 set Qε =

(0, ε) × (1/2, 1/2 + ε) and ∆ε = {(x, y) : 0 < y < x < ε}. Let us show that

(3.8) Mµf(x, y) ≥
1

4
log

1

ε
, for (x, y) ∈ ∆ε

and

(3.9) Mµf(x, y) ≤ 16, for (x, y) ∈ Qε.

Assuming for a moment (3.8) and (3.9) to be true, we note that they imply easily

the desired result. Indeed, take a family of cubes Q′
ε such that Q′

ε ∩ Q0 = Pε,

where Pε = (0, ε) × (0, 1/2 + ε). By (3.8),

(Mµf)Q′

ε,µ ≥
1

ε2 + ε2/2

∫

∆ε

Mµf(x, y)dxdy ≥
1

12
log

1

ε
.

Hence, by (3.9), for ε small enough we have

Ωµ(Mµf ; Q′
ε) ≥

2

3ε2

∫

Qε

|Mµf(x, y) − (Mµf)Q′

ε,µ|dxdy

≥
2

3

( 1

12
log

1

ε
− 16

)
.

Therefore,

(3.10) sup
ε>0

Ωµ(Mµf ; Q′
ε) = ∞,

which proves that Mµf 6∈ BMO(µ).

To show (3.8), take (x, y) ∈ ∆ε and x′ < x. Let Q be a cube such that

Q ∩ Q0 = (x′, 1) × (0, x′). Then (x, y) ∈ Q, and

fQ,µ =
1

x′(1 − x′)

∫ x′

0

∫ 1

x′

log
x

y
dxdy ≥

1

4x′

∫ x′

0

log
1

2y
dy

≥
1

4
log

1

x′
≥

1

4
log

1

ε
,

which proves (3.8).

We prove now (3.9). Take (x, y) ∈ Qε, and let Q be an arbitrary cube

containing (x, y). We can assume that Q∩ {y = x} 6= ∅ and Q∩{y = 1/2} 6= ∅,

since otherwise fQ,µ = 0. If Q ∩ {x = 0} = ∅, then |Q \ ∆| ≥ 1/32, and hence

fQ,µ ≤ 32

∫ 1

0

∫ x

0

log
x

y
dydx = 16.
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Suppose that Q ∩ {x = 0} 6= ∅, and let

A ≡ (Q \ ∆) ∩ {y < 1/2} = {(x, y) : x ∈ (a, a + h), y ∈ (a, x)}

for some a ≥ 0 and h > 0. We can assume that a + h < 1/2, since otherwise

|Q \∆| ≥ 1/4, and, as above we have fQ,µ ≤ 2. Note that |A| = h2/2. If a = 0,

then

fQ,µ ≤
1

|A|

∫ h

0

∫ x

0

log
x

y
dydx ≤ 1.

Let a > 0 and h < a. Then

fQ,µ ≤
1

|A|

∫ a+h

a

∫ x

a

log
x

y
dydx ≤ 2 log(1 + h/a) ≤ 2 log 2.

Let 0 < a ≤ h. Then

fQ,µ ≤
1

|A|

∫ a+h

a

∫ x

a

log
x

y
dydx

=
2

h2
(h2/2 + ah − a(a + h) log(1 + h/a)) ≤ 3.

All the cases considered above yield (3.9).

The theorem is proved.

4. Concluding remarks

Remark 4.1: Inequality (1.2) is new even in the case of Lebesgue measure.

Using similar arguments, one can show that for doubling µ this inequality holds

for all n ≥ 1 (of course with the constant depending on µ).

Remark 4.2: One can ask whether it is possible to “cancel” Mµ in both parts

of (1.2) in order to get a stronger inequality

Mµf(x) ≤ cf#
µ f(x) + |f(x)|.

But this inequality is not true since it would imply that BMO(µ) = BLO(µ)

for positive f .

Remark 4.3: In proving the second part of Theorem 1.1 we actually have ob-

tained that f belongs to the “strong” BMO(µ) (where the supremum is taken

over all rectangular intervals instead of cubes). Therefore, in case of general µ

and n ≥ 2 even a stronger requirement that f belongs to the “strong” BMO(µ)

does not imply that Mµf belongs to the usual BMO(µ).
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Remark 4.4: In the non-doubling situation several different generalizations of

BMO are known. The space BMO(µ) considered here was studied in [8]. Tolsa

[14] introduced another variant of BMO, the space RBMO(µ). In [6], a variant

of BLO was introduced in that context, the space RBLO(µ), and for a kind

of the maximal operator (defined by means of the so-called doubling cubes; see

[14] for details) it was shown the boundedness from RBMO(µ) to RBLO(µ).

Note that the proof of this fact follows the standard lines from [1], although

with the use of the John–Nirenberg inequality for RBMO(µ) proved in [14].

Remark 4.5: It is well-known [3] that for doubling µ and for 0 < δ < 1 we have

Mµ((Mµf)δ)(x) ≤ cMµf(x)δ. It was asked in [9, p. 2022] if this result holds

for non-doubling µ. Using the same technique as in the proof of the first part

of Theorem 1.1, one can show that in the one-dimensional case the answer is

positive. We outline the proof briefly.

Proposition 4.6: Let µ be a non-negative Radon measure. For any µ-locally

integrable function f on R and for all x ∈ R,

Mµ((Mµf)δ)(x) ≤ cδMµf(x)δ (0 < δ < 1).

Proof: We shall use the same notions as in the proof of Theorem 1.1. Let

x, y ∈ I and let J ⊂ (−R, R) be an arbitrary interval containing y. If µ(J) ≥

µ(I)/2, then

|f |J,µ ≤ 3|f |
J̃,µ

≤ 3Mµf(x).

Assuming µ(J) < µ(I)/2, we obtain

|f |J,µ ≤ Mµ(fχL)(y).

Therefore,

(MR
µ f(y))δ ≤ Mµ(fχL)(y)δ + 3δMµf(x)δ.

From this, by Proposition 2.2 and Kolmogorov’s inequality,

1

µ(I)

∫

I

(MR
µ f(y))δdµ ≤

2δ

1 − δ

(
1

µ(I)

∫

L

|f |dµ

)δ

+ 3δMµf(x)δ

≤
( 4δ

1 − δ
+ 3δ

)
Mµf(x)δ.

Letting R → ∞ and taking the supremum over all I containing x completes the

proof.
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