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ABSTRACT

‘We show that in the one-dimensional case the weighted Hardy—Littlewood
maximal operator My, is bounded on BMO(p) for arbitrary Radon mea-
sure p, and that this is not the case in higher dimensions.

1. Introduction

Let 4 be a nonnegative Radon measure on R™. For a bounded set £ C R" of

positive py-measure and a p-locally integrable function f set

1 1
fou= /E F@d, Q(f:B) =~ [E F(@) — feldu.

The Hardy-Littlewood and Fefferman—Stein maximal operators with respect to

w are defined by
M, f(z) =sup|flo, and fF(z)=supQu(f;Q),
Q3x Q3x

respectively, where the supremum is taken over all cubes ) containing the
point x such that u(Q) > 0. By a cube we mean an open cube with sides
parallel to the axes.

If © is a doubling measure (i.e., there exists a constant ¢ > 0 such that
1(2Q) < cp(Q) for all @Q), then a classical result [13, p. 13] says that M, maps
L,, into weak-L,, (in other words, M), is of weak type (1,1)) and L% into itself
for p > 1. In the case n = 1 this result holds without any assumption on y;
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when n > 2 there exist measures p for which M, is not of weak type (1,1) (see
[11] and also [12, 16]).

In this paper we consider a question on the behaviour of M, on the space
BMO(u) for nondoubling measures. A function f € L{, (u) is said to belong
to BMO(u) if

1 lmatoq = 17 s < oo.

We say that f € L{ (u) belongs to BLO(u) (cf. [3]) if

loc

I fllBLow) = Sgp(fg,u - enginf f) < .

Note that BLO(p) C BMO(p) and || f|[smow) < 2[fllBrow-
It is well-known for doubling x that if f € BMO(u) and M, f is not identically
infinite, then M, f € BLO(p), and

(1.1) 1M fllBLow) < cullfllBaro)-

In the case of Lebesgue measure, (1.1) was first proved by Bennett, DeVore and
Sharpley [2] with the BMO-norm on the left-hand side; a BLO-improvement
was obtained later in [1]. The method used in [1] works easily for any doubling
measure. Different proofs of (1.1) were also given in [4, 7, 10, 15]. An attempt to
generalize them to arbitrary measures leads only to measures satisfying the dou-
bling condition. Also, all these proofs were essentially based (at least implicitly)
on the John—Nirenberg inequality.

Observe that, as was shown in [8], the John—Nirenberg inequality for functions
from BMO(p) holds for a wide class of p, namely, whenever u(L) = 0 for every
hyperplane L, orthogonal to one of the coordinate axes. In the one-dimensional
case this simply means that p is continuous. Also, an example of singular p was
given in [8] for which the John—Nirenberg inequality does not hold.

The main result of this paper is somewhat surprising since it says that in the
one-dimensional case (1.1) holds for any nonnegative Radon measure p, even
without the requirement of continuity of p. Thus, we shall give a new proof
of (1.1) that avoids both the doubling property of u and the John—Nirenberg
inequality. We also show that this geometrical phenomenon is not true in higher
dimensions. The following theorem may be viewed as a BM O-counterpart of
Sjogren’s theorem from [11].

THEOREM 1.1: (i) Let u be a nonnegative Radon measure on R. For any pu-
locally integrable function f on R and for all © € R,

(1.2) M, (M, f)(x) < 40M#(ff)(x) + My, f(z).
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In particular, if f € BMO(u) and M, f < oo, then

(1.3) M fll Lo < 40| fllBro(w)-

(i) For n = 2, there is an absolutely continuous measure . for which M, is not
bounded on BMO().

2. Auxiliary propositions
We shall use the following well-known properties of mean oscillations.

PROPOSITION 2.1: For any f € Li (1),

(2.1) Qu(If; B) < 29u(f; E),
(2.2) Qu(max(f,0); E) < Q.(f; E),
and

1
B /E (@) - cldp.

We will also need the above-mentioned weak type (1,1) property of M,, for

(2.3) Qu(f: E) < 2inf

arbitrary measures on R.

PROPOSITION 2.2: Let u be a nonnegative Radon measure on R. Then for any
feL,(R),

(2.4) ple €R: Myf(z) > a} < 2[fliye (o >0)

This result was obtained in [11]; for a proof with constant 2 on the right-hand
side of (2.4) see [5].

PROPOSITION 2.3: Let p be a nonnegative Radon measure on R. A nonnegative
function f € L{. (i) belongs to BLO(p) if and only if M, f — f belongs to L,

loc
and

(2.5) IfllBLow = 1Muf = flloo-

In the case of Lebesgue measure this was proved in [1, Lemma 2| for all
n > 1; the proof was based on the notion of Lebesgue points of f. Due to
Proposition 2.2, such approach in the one-dimensional case can be directly
generalized to arbitrary measures. We omit details.
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3. Proof of the main result

Proof of Theorem 1.1: We start with the first part of the theorem, so let n = 1.
Assume that f > 0. Fix a point «, and let I be an arbitrary interval containing
x. Let R > 0 be a number large enough such that I C (—R, R). Let y € I, and
take any interval J C (—R, R) containing y.

Suppose that z(.J) > p(I)/2. Then setting J = I U.J, we have pu(J) < 3u(J),
and

fJ,,u < |fJ,,u - fj#| + fj# < 3Q,u(f, J) + Muf(l‘)
(3.1) <3/ (y) + M f(x).

Assume now that p(J) < u(I)/2. Denote by L the union of I and all the
intervals J C (=R, R) with J NI % 0 and u(J) < p(I)/2. It is clear that L
is an interval. Also we easily have that u(L) < 2u(I). Indeed, let L = (a,b).
For any € > 0 there exist intervals J;,7 = 1,2, such that u(J;) < p(I)/2 and
(a+e,b—¢)C JyUIUJy Hence,

plla+eb—e) <2u(I) and  p(L) = lim p((a+e,b <)) < 2u(1).

Set
Ey={£e€ J:|f(&) = foul = () — frul}-
If j(Ey) > p(J)/2, then

f.],,u S 2§i€nEfJ |f(§) - fJ,;L| + fL,,u S 4Qu(fa J) + M#f(l')
(3.2) <AfF(y) + My f(x).
If u(Ey) < u(J)/2, then p(J\ Ey) > pu(J)/2, hence

frp<2 it [f(6) = fru)l+ fou

EeJ\E
(3.3) < 2my((f = fruw)xe)(y) + My f(z),
where
my f(y) = sup sup inf |f(£)].

I3y BECTu(B)>Lu()) t€F

Unifying estimates (3.1), (3.2) and (3.3) yields

Mff(y) = sSup fJ,;L
Joy,JC(—R,R)

(3.4) <4fF(y) + 2mu((f = fra)xe)(y) + Muf (@),
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It is easy to see that

y:muf(y) > a} C{y: Muxq>ay(y) = 1/2}.

Hence, by Proposition 2.2,
sl = [ nly: maf(w) > a}da
0

§4A iy < 1F(y)] > a}da = 4] ]| 1.

Therefore, using (3.4) and the fact that u(L) < 2u(I), we have

1
M/I du_ /f# dpr + )Hmu((f fLw)XL)HLl + M, f( )

<4M (f#)(x) + 169, (f L)+ M, f(x)
§20Mu(ff)($) + M, f(z).

Letting R — oo, and then taking the supremum over all I containing z, we
obtain

(3.5) M, (M, f)(x) < ZOM#(f#)(:r) + My, f(z).

This proves (1.2) for nonnegative f. The general case follows from (3.5) and
(2.1). Next, (1.3) follows from (1.2) and from Proposition 2.3.

We turn to the second part of the theorem, suppose that n = 2. Let Qg =
{(z,y) : 0 < z,y < 1}. Denote by A and T the open triangles bounded by the
lines y =2,y =1/2,2 =0, and y = 2,y = 0,2 = 1, respectively. Set now

dp = xgo\a(@,y)dzdy and  f(z,y) = (log(z/y))xr(z, ).
First we prove that f € BMO(u). Clearly it suffices to show that

(3.6) sup Qu(f;P) < o0
PCQo

where the supremum is taken over all rectangles P C Qo with u(P) > 0. Observe
that if P C Qo, then pu(P) = |P\ A|, where | - | denotes the usual Lebesgue
measure. Therefore one assumes that P\ A # 0.

Using (2.2) and the fact that logz € BMO(0, 1), for every rectangle P C Qo
we obtain

(3.7) Q(f; P) < Qlog(x/y); P) < 2[|logz||prmo,1) < ¢

(we drop the subscript p in the case of Lebesgue measure).
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Take now an arbitrary rectangle P C Qo such that P\ A # 0. If PNA =0,
then by (3.7) we obtain

Qu(fs P)=Qf;P) <c

Therefore, assume that P N A # (). There are the following cases.

CASE 1: Suppose that PN {y = z} = (. In this case we trivially have
Qu(f; P)=0.

CASE 2:  Suppose that PN {y = 2} # 0 and PN {y = 1/2} = 0. Let P be
the smallest rectangle containing P\ A. It is easy to see that |P| < 2|P\ Al.
Therefore, by (2.3) and (3.7),

Qu(f; |P\A| / — [pldedy < 4Q(f; P) < 4c.

CASE 3:  Suppose that PN{y =z} #0, PN{y=1/2} # 0 and (1/2,1/2) €
P. If the point (1/4,1/4) does not belong to P, then f(x,y) < log4 for all
(x,y) € P, hence Q,(f; P) < 2log4. If (1/4,1/4) € P, then it is easy to see
that |P| < 4|P\ Al, and by (2.3) and (3.7) we have

Q. (f; P) < IP\AI/ — fpldzdy < 8Q(f; P) < Sc.

CASE 4:  Suppose that PN{y =z} # 0, PN{y = 1/2} # 0 and (1/2,1/2) & P.
Let P, = PN{y < 1/2} and P, = PN {y > 1/2}. As in case 2, we take P;
to be the smallest rectangle containing P; \ A. Denote by Pj the rectangle P,

translated until ]51, and let P = ]51 U Pj. Observe that Pisa rectangle, and
|P| = |Pi| + | P3| < 2Py \ Al +|P2| < 2u(P).

Thus, applying again (2.3) and (3.7), we obtain

4
Q P = — f=|dxd — fx|dxd,
iz )§|]3|(P2|f fplxy+/Pl\A|f Fldody )
4
= — — 1dd - :dd
|15|(Pz'|f fplxy+/1\A|f fp|xy)

< 4Q(f,§) < 4e.

Combining all the cases considered above proves (3.6).
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It remains to show that M, f ¢ BMO(u). For 0 < € < 1/4 set Q. =
(0,e) x (1/2,1/2+¢) and A, = {(z,y) : 0 < y < z < e}. Let us show that

1 1
(38) Muf(l‘,y) 2 Z IOg ga fOI‘ (x,y) S Ae
and
(3.9) M, f(z,y) <16, for (z,y) € Q..

Assuming for a moment (3.8) and (3.9) to be true, we note that they imply easily
the desired result. Indeed, take a family of cubes Q. such that Q. N Qo = P,
where P. = (0,¢) x (0,1/24¢). By (3.8),

1
M _— M, > —l -
( f) E,H - 52/2/ ;,Lf x y)dl‘dy 12 Og

Hence, by (3.9), for £ small enough we have

2

Qu(M,f;QL) > = /g |Myf(2,y) — (Muf)qr,uldzdy
2,1 . 1
>Z(—log- —16).
= 3(12 log 2 16)
Therefore,
(3.10) sup (M. f; QL) =
e>0

which proves that M, f ¢ BMO(u).
To show (3.8), take (z,y) € A, and 2/ < x. Let @ be a cube such that

QNQo=(2',1) x (0,2"). Then (z,y) € Q, and

1 o g 171
log Ldrdy > — [ log —d
Jfou= T =) /[ ogyxy_%,o og2yy

1
log —,

')
> 2iog L >
x! €

4>|»—~
S S

which proves (3.8).

We prove now (3.9). Take (x,y) € Q., and let @ be an arbitrary cube
containing (x,y). We can assume that QN {y =z} # 0 and QN {y = 1/2} # 0,
since otherwise fg , = 0. If @ N {z =0} =0, then |@Q \ A| > 1/32, and hence

1 x
L < 32/ / log Ldydz = 16.
0o Jo Yy
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Suppose that @ N {x = 0} # 0, and let

A=@Q\A)N{y <1/2} ={(z,y) : x € (a,a+ ),y € (a,2)}

for some a > 0 and h > 0. We can assume that a + h < 1/2, since otherwise
|Q \ A| > 1/4, and, as above we have fq , < 2. Note that |[4| = h?/2. If a = 0,

then
F <1/h/$1 Y dydr < 1
w <= og —dydx < 1.
Qi |A| o Jo Yy
Let a > 0 and h < a. Then

1 a+h x
fou < m/ / 1og£dyda: < 2log(l+ h/a) < 2log?2.
a a y

Let 0 < a < h. Then

1 a+h T T
fa, S—/ / log —dydzx
Rl T S A

2
= ﬁ(hQ/Z + ah —a(a+ h)log(l + h/a)) < 3.
All the cases considered above yield (3.9).
The theorem is proved. |

4. Concluding remarks

Remark 4.1: Inequality (1.2) is new even in the case of Lebesgue measure.
Using similar arguments, one can show that for doubling g this inequality holds
for all n > 1 (of course with the constant depending on ).

Remark 4.2:  One can ask whether it is possible to “cancel” M, in both parts
of (1.2) in order to get a stronger inequality

My f(z) < cff f(z) + | f(2)].

But this inequality is not true since it would imply that BMO(u) = BLO(u)
for positive f.

Remark 4.3: In proving the second part of Theorem 1.1 we actually have ob-
tained that f belongs to the “strong” BMO(u) (where the supremum is taken
over all rectangular intervals instead of cubes). Therefore, in case of general
and n > 2 even a stronger requirement that f belongs to the “strong” BMO(u)
does not imply that M, f belongs to the usual BMO(u).
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Remark 4.4: In the non-doubling situation several different generalizations of
BMO are known. The space BMO(u) considered here was studied in [8]. Tolsa
[14] introduced another variant of BM O, the space RBMO(u). In [6], a variant
of BLO was introduced in that context, the space RBLO(u), and for a kind
of the maximal operator (defined by means of the so-called doubling cubes; see
[14] for details) it was shown the boundedness from RBMO(u) to RBLO(u).
Note that the proof of this fact follows the standard lines from [1], although
with the use of the John—Nirenberg inequality for RBMO(u) proved in [14].

Remark 4.5: 1t is well-known [3] that for doubling p and for 0 < § < 1 we have
M, ((M,f)°)(x) < cM,f(z)°. Tt was asked in [9, p. 2022] if this result holds
for non-doubling . Using the same technique as in the proof of the first part
of Theorem 1.1, one can show that in the one-dimensional case the answer is
positive. We outline the proof briefly.

PROPOSITION 4.6: Let i be a non-negative Radon measure. For any p-locally
integrable function f on R and for all x € R,
M, (M. f)°)(z) < csM,f(z)° (0<6<1).

Proof: We shall use the same notions as in the proof of Theorem 1.1. Let
z,y € I and let J C (—R, R) be an arbitrary interval containing y. If u(J) >
w(I)/2, then

Flow <3115, < 3M,f(@).

Assuming p(J) < p(I)/2, we obtain

[flow < Mu(fxe)(y).

Therefore,
(M) < Mu(fxn)(y)’ +3° M, f(x)°.

From this, by Proposition 2.2 and Kolmogorov’s inequality,

1 R (116 2 (1 ? s )
5 JosEryas 25 (s [ 1) +30,000)

< (5o

Letting R — oo and taking the supremum over all I containing x completes the
proof. |
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